Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(2): 1395-1403, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38176021

RESUMO

Li3Fe3Te2O12 adopts a crystal structure, described in space group Pnnm, related to that of LiSbO3, in which Te6+, Fe3+, and Li+ cations reside in a partially ordered configuration within an hcp array of oxide ions. Chemical or electrochemical insertion of lithium is accompanied by a fully reversible migration of some of the Fe cations with an initial capacity of 120 mA h g-1 (2.85 Li per formula unit). Long-term cycling stability is limited by the facile reduction of Te6+ to elemental Te, which leads to cathode decomposition. Partial substitution of Fe by In suppresses Te6+ reduction, such that Li3Fe2InTe2O12 shows no sign of this cathode decomposition pathway, even after 100 cycles. In contrast, Al-for-Fe substitution is chemically limited to Li3Fe2.6Al0.4Te2O12 and appears to have almost no influence on cathode longevity. These features of the Li3Fe3-xMxTe2O12 system are discussed on the basis of a detailed structural analysis performed using neutron and synchrotron X-ray diffraction.

2.
J Appl Crystallogr ; 56(Pt 4): 1066-1075, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37555229

RESUMO

Studying chemical reactions in real time can provide unparalleled insight into the evolution of intermediate species and can provide guidance to optimize the reaction conditions. For solid-state synthesis reactions, powder diffraction has been demonstrated as an effective tool for resolving the structural evolution taking place upon heating. The synthesis of layered Ni-rich transition-metal oxides at a large scale (grams to kilograms) is highly relevant as these materials are commonly employed as cathodes for Li-ion batteries. In this work, in situ neutron diffraction was used to monitor the reaction mechanism during the high-temperature synthesis of Ni-rich cathode materials with a varying ratio of Ni:Mn from industrially relevant hydroxide precursors. Rietveld refinement was further used to model the observed phase evolution during synthesis and compare the behaviour of the materials as a function of temperature. The results presented herein confirm the suitability of in situ neutron diffraction to investigate the synthesis of batches of several grams of electrode materials with well-controlled stoichiometry. Furthermore, monitoring the structural evolution of the mixtures with varying Ni:Mn content in real time reveals a delayed onset of li-thia-tion as the Mn content is increased, necessitating the use of higher annealing temperatures to achieve layering.

3.
Inorg Chem ; 61(39): 15686-15692, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36129165

RESUMO

Topochemical reduction of the cation-disordered perovskite oxides LaCo0.5Rh0.5O3 and LaNi0.5Rh0.5O3 with Zr yields the partially anion-vacancy ordered phases LaCo0.5Rh0.5O2.25 and LaNi0.5Rh0.5O2.25, respectively. Neutron diffraction and Hard X-ray photoelectron spectroscopy (HAXPES) measurements reveal that the anion-deficient phases contain Co1+/Ni1+ and a 1:1 mixture of Rh1+ and Rh3+ cations within a disordered array of apex-linked MO4 square-planar and MO5 square-based pyramidal coordination sites. Neutron diffraction data indicate that LaCo0.5Rh0.5O2.25 adopts a complex antiferromagnetic ground state, which is the sum of a C-type ordering (mM5+) of the xy-components of the Co spins and a G-type ordering (mΓ1+) of the z-components of the Co spins. On warming above 75 K, the magnitude of the mΓ1+ component declines, attaining a zero value by 125 K, with the magnitude of the mM5+ component remaining unchanged up to 175 K. This magnetic behavior is rationalized on the basis of the differing d-orbital fillings of the Co1+ cations in MO4 square-planar and MO5 square-based pyramidal coordination sites. LaNi0.5Rh0.5O2.25 shows no sign of long-range magnetic order at 2 K - behavior that can also be explained on the basis of the d-orbital occupation of the Ni1+ centers.

4.
Chem Mater ; 33(14): 5652-5667, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34483480

RESUMO

Solid electrolytes are crucial for next-generation solid-state batteries, and Na3PS4 is one of the most promising Na+ conductors for such applications, despite outstanding questions regarding its structural polymorphs. In this contribution, we present a detailed investigation of the evolution in structure and dynamics of Na3PS4 over a wide temperature range 30 < T < 600 °C through combined experimental-computational analysis. Although Bragg diffraction experiments indicate a second-order phase transition from the tetragonal ground state (α, P4̅21 c) to the cubic polymorph (ß, I4̅3m) above ∼250 °C, pair distribution function analysis in real space and Raman spectroscopy indicate remnants of a tetragonal character in the range 250 < T < 500 °C, which we attribute to dynamic local tetragonal distortions. The first-order phase transition to the mesophasic high-temperature polymorph (γ, Fddd) is associated with a sharp volume increase and the onset of liquid-like dynamics for sodium-cations (translational) and thiophosphate-polyanions (rotational) evident by inelastic neutron and Raman spectroscopies, as well as pair-distribution function and molecular dynamics analyses. These results shed light on the rich polymorphism of Na3PS4 and are relevant for a range host of high-performance materials deriving from the Na3PS4 structural archetype.

5.
Inorg Chem ; 60(18): 13990-14001, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34496217

RESUMO

This study presents the influence of polymorphism on the magnetic properties of Co5TeO8. This compound with a spinel-like structure [Co2]A[Co3Te]BO8 was synthesized into two polymorphs: one disordered within a cubic Fd3̅m structure, where Co2+ and Te6+ ions are randomly distributed on the octahedral B sites [the disordered polymorph can also be presented as an inverse spinel of the formula Co(Co1.5Te0.5)O4] and the other ordered with a cubic P4332 structure where Co2+ and Te6+ ions are ordered on the B sites. The macroscopic magnetic measurements showed that both polymorphs present a ferrimagnetic ordering, below ∼40 K, and a second transition is also observed at 27 K for the ordered polymorph. Neutron powder diffraction data between room temperature and 1.7 K showed as well the presence of short-range magnetic ordered clusters, which appears for both polymorphs below 200 K. At lower temperature, these short-range orders are transformed into long-range ferrimagnetic orders. Below TC = 40 K, the colinear ferrimagnetic structure of the disordered polymorph is described with the I41/am'd' space group. The ordered polymorph undergoes an incommensurate ferrimagnetic spiral spin ordering below TC1 = 45 K, followed by a second magnetic phase transition at TC2 = 27 K. This last transition is associated with the emergence of an additional ferrimagnetic component and an abrupt change in the magnitude of the magnetic propagation vector k = [0, 0, γ] from γ = 0.086 at T = 30 K to γ ≈ 0.14 in the range between 27 and 1.7 K. The magnetic symmetry of the ordered polymorph is described with the P43(00γ)0 magnetic superspace group. We evidenced that the ordering of Co2+/Te6+ on the B sites changes all of the Co-Co and Co-O distances and thus all JAB, JAA, and JBB exchange interactions, between the A and B sites, which are able to stabilize the incommensurate spin modulation in the ordered polymorph.

6.
Inorg Chem ; 60(8): 6016-6026, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33825461

RESUMO

The crystal structures of three polymorphs of Rb3ScF6 have been determined through a combination of synchrotron, laboratory X-ray, and neutron powder diffraction, electron diffraction, and multinuclear high-field solid-state NMR studies. The room temperature (RT; α) and medium-temperature (ß) structures are tetragonal, with space groups I41/a (Z = 80) and I4/m (Z = 10) and lattice parameters a = 20.2561(4) Å, c = 36.5160(0) Å and a = 14.4093(2) Å, c = 9.2015(1) Å at RT and 187 °C, respectively. The high-temperature (γ) structure is cubic space group Fm3̅m (Z = 4) with a = 9.1944(1) Å at 250 °C. The temperatures of the phase transitions were measured at 141 and 201 °C. The three α, ß, and γ Rb3ScF6 phases are isostructural with the α, ß, and δ forms of the potassium cryolite. Detailed structural characterizations were performed by density functional theory as well as NMR. In the case of the ß polymorph, the dynamic rotations of the ScF6 octahedra of both Sc crystallographic sites have been detailed.

7.
Inorg Chem ; 60(4): 2623-2633, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33529531

RESUMO

Up to now, the possible occurrence of a cationic ordering on the tetrahedral sublattices of stoichiometric double scheelite-type oxides was not settled, with somewhat contradictory X-ray diffraction and optical measurements [Blasse, G. J. Inorg. Nucl. Chem. 1968, 30, 2091]. Using two different synthesis routes, both ordered and disordered forms of fergusonite La2SiMoO8 were prepared. The crystal structure of the ordered form was determined using powder X-ray and neutron diffraction, which clearly evidence a tridimensional ordering between [SiO4] and [MoO4] tetrahedra. The crystal chemistry of ordered double sheelite-type LaIII2(SiIVO4)(MoVIO4) can be seen as an intermediate between those of simple regular scheelite or fergusonite LnIII(NbVO4) and of ordered triple scheelite BiIII3(FeIIIO4)(MoVIO4)2. The structure of the disordered La2SiMoO8 phase was analyzed using powder X-ray diffraction. A few small and larger diffraction peaks or bumps are observed in addition to the sharper peaks of a simple fergusonite cell. DIFFaX and FAULTS programs helped showing that these faint peaks originate from stacking faults between 2D ordered layers. The intermediate 2D-3D nature of SiO4/MoO4 ordering in seemingly disordered compounds might explain the previous discrepancy between optical and X-ray diffraction measurements.

8.
Inorg Chem ; 59(24): 17970-17980, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33264565

RESUMO

The crystal structure and magnetic properties of the cubic spinel MgFeMnO4 were studied by using a series of in-house techniques along with large-scale neutron diffraction and muon spin rotation spectroscopy in the temperature range between 1.5 and 500 K. The detailed crystal structure is successfully refined by using a cubic spinel structure described by the space group Fd3̅m. Cations within tetrahedral A and octahedral B sites of the spinel were found to be in a disordered state. The extracted fractional site occupancies confirm the presence of antisite defects, which are of importance for the electrochemical performance of MgFeMnO4 and related battery materials. Neutron diffraction and muon spin spectroscopy reveal a ferrimagnetic order below TC = 394.2 K, having a collinear spin arrangement with antiparallel spins at the A and B sites, respectively. Our findings provide new and improved understanding of the fundamental properties of the ferrispinel materials and of their potential applications within future spintronics and battery devices.

9.
ChemistryOpen ; 9(10): 977, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33024650

RESUMO

Invited for this month's cover are the groups of Annalisa Martucci and Luisa Pasti at the University of Ferrara (Italy). The cover picture shows L-lysine amino acid adsorption on zeolite L. The role of zeolite channels in the stabilization of the lysine absorbed and the effect of water on protein structure are elucidated at atomistic level. The stabilization of the L α-helical conformation is related to strong H-bonds between the tail aminogroups of lysine molecules and the Brønsted acid site as well as to complex intermolecular H-bond system between water molecules, zeolite and amino acid. Read the full text of their Full Paper at 10.1002/open.202000183.


Assuntos
Lisina/química , Difração de Nêutrons , Síncrotrons , Difração de Raios X , Zeolitas/química , Adsorção , Ligação de Hidrogênio
10.
ChemistryOpen ; 9(10): 978-982, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33024651

RESUMO

Combined neutron and X-ray powder diffraction techniques highlighted the sorption capacity of the acidic L zeolite towards the L-lysine amino acid. The role of zeolite channels in the stabilization of the lysine absorbed and the effect of water on protein structure are elucidated at atomistic level. The stabilization of the L α-helical conformation is related to strong H-bonds between the tail aminogroups of lysine molecules and the Brønsted acid site as well as to complex intermolecular H-bond system between water molecules, zeolite and amino acid. This finding is relevant in the catalytic synthesis of polypeptide, as well as in industrial biotechnology by qualitatively predicting binding behaviour.


Assuntos
Lisina/química , Difração de Nêutrons , Síncrotrons , Difração de Raios X , Zeolitas/química , Adsorção , Ligação de Hidrogênio , Estabilidade Proteica
11.
J Am Chem Soc ; 142(43): 18422-18436, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33054192

RESUMO

Fast-ion conductors are critical to the development of solid-state batteries. The effects of mechanochemical synthesis that lead to increased ionic conductivity in an archetypical sodium-ion conductor Na3PS4 are not fully understood. We present here a comprehensive analysis based on diffraction (Bragg and pair distribution function), spectroscopy (impedance, Raman, NMR and INS), and ab initio simulations aimed at elucidating the synthesis-property relationships in Na3PS4. We consolidate previously reported interpretations regarding the local structure of ball-milled samples, underlining the sodium disorder and showing that a local tetragonal framework more accurately describes the structure than the originally proposed cubic one. Through variable-pressure impedance spectroscopy measurements, we report for the first time the activation volume for Na+ migration in Na3PS4, which is ∼30% higher for the ball-milled samples. Moreover, we show that the effect of ball-milling on increasing the ionic conductivity of Na3PS4 to ∼10-4 S/cm can be reproduced by applying external pressure on a sample from conventional high-temperature ceramic synthesis. We conclude that the key effects of mechanochemical synthesis on the properties of solid electrolytes can be analyzed and understood in terms of pressure, strain, and activation volume.

12.
Inorg Chem ; 58(17): 11546-11552, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31436964

RESUMO

Layered oxide compositions Li3-xNaxNi2SbO6 have been prepared by solid-state synthesis. A complete solid solution is evidenced and characterized by X-ray and neutron diffraction as well as 7Li and 23Na solid-state nuclear magnetic resonance spectroscopy. The transition-metal layer is characterized by the classic honeycomb Ni2+/Sb5+ ordering, whereas a more uncommon randomly mixed occupancy of lithium and sodium is evidenced within the alkali interslab space. In situ X-ray diffraction and density functional theory calculations show that this alkali disordered feature is entropically driven. Fast cooling then appears as a synthesis root to confine bidimensional alkali glass within crystalline layered oxides.

13.
RSC Adv ; 9(48): 27780-27788, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-35530459

RESUMO

After momentary attention as potential battery materials during the 1980s, sodium titanium disulphides, like the whole Na-Ti-S system, have only been investigated in a slapdash fashion. While they pop up in current reviews on the very subject time and again, little is known about their actual crystal-structural features and sodium-ion diffusion within them. Herein, we present a short summary of literature on the Na-Ti-S system, a new synthesis route to Na0.5TiS2-3R 1, and results of high-temperature X-ray and neutron diffractometry on this polytype, which is stable for medium sodium content. Based thereon, we propose a revision of the crystal structure reported in earlier literature (missed inversion symmetry). Analyses of framework topology, probability-density functions, and maps of the scattering-length density reconstructed using maximum-entropy methods (all derived from neutron diffraction) reveal a honeycomb-like conduction pattern with linear pathways between adjacent sodium positions; one-particle potentials indicate associated activation barriers of ca. 0.1 eV or less. These findings are complemented by elemental analyses and comments on the high-temperature polytype Na0.9TiS2-2H. Our study helps to get a grip on structural complexity in the intercalates Na x TiS2, caused by the interplay of layer stacking and Na-Ti-vacancy ordering, and provides first experimental results on pathways and barriers of sodium-ion migration.

14.
Inorg Chem ; 57(24): 15350-15360, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30475605

RESUMO

Because of its sensitivity to the atomic scale environment, solid-state NMR offers new perspectives in terms of structural characterization, especially when applied jointly with first-principles calculations. Particularly, challenging is the study of actinide-based materials because of the electronic complexity of the actinide cations and to the hazards due to their radioactivity. Consequently, very few studies have been published in this subfield. In the present paper, we report a joint experimental-theoretical analysis of thorium tetrafluoride, ThF4, containing a closed-shell actinide (5f0) cation. Its crystalline structure has been revisited in the present work using powder neutron diffraction experiments. The 19F NMR parameters of the seven F crystallographic sites have been modeled using an empirical superposition model, periodic first-principles calculations, and a cluster-based all-electron approach. On the basis of the atomic position optimized structure, a complete and unambiguous assignment of the 19F NMR resonances to the F sites has been obtained.

15.
Dalton Trans ; 47(37): 13088-13093, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30167627

RESUMO

A layered iron compound involving two divalent polyanions (carbonate and sulfate anions) was synthesized by solid state chemistry in a closed ampule in the form of a ceramic. The Sr4Fe2[Fe0.5(SO4)0.25(CO3)0.25]O7.25 compound derives from the third term of the Ruddlesden and Popper family, Sr4Fe3O10. A multiscale approach through transmission electron microscopy (TEM) and powder neutron diffraction (PND) studies shows that SO4 and CO3 groups substitute for the iron polyhedron of the central layer of the perovskite blocks and the absence of long range ordering between sulfate and carbonates and FeO5 groups. Nevertheless, waves disturbing the expected periodicity of the atomic layer are evidenced in HAADF images. An accurate analysis of these images provides a view of the local cationic order correlated with SO4 and CO3 for FeO5 substitution.

16.
Inorg Chem ; 57(20): 12827-12835, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30256100

RESUMO

It has recently been reported that the ordered aeschynite-type polar ( Pna21) magnets RFeWO6 (R = Eu, Tb, Dy, Y) exhibit type II multiferroic properties below TN ∼ 15-18 K. Herein, we report a comprehensive investigation of the isostructural oxide DyCrWO6 and compare the results with those of DyFeWO6. The cation-ordered oxide DyCrWO6 crystallizes in the same polar orthorhombic structure and undergoes antiferromagnetic ordering at TN = 25 K. Contrary to DyFeWO6, only a very weak dielectric anomaly and magnetodielectric effects are observed at the Néel temperature and, more importantly, there is no induced polarization at TN. Furthermore, analysis of the low-temperature neutron diffraction data reveals a collinear arrangement of Cr spins but a noncollinear Dy-spin configuration due to single-ion anisotropy. We suggest that the collinear arrangement of Cr spins may be responsible for the absence of electric polarization in DyCrWO6. A temperature-induced magnetization reversal and magnetocaloric effects are observed at low temperatures.

17.
Inorg Chem ; 56(14): 8478-8489, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28678481

RESUMO

The compounds of the doubly ordered perovskite family NaLnCoWO6 (Ln = Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Yb) were synthesized by solid-state reaction, nine of which (Ln = Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Yb) are new phases prepared under high-temperature and high-pressure conditions. Their structural properties were investigated at room temperature by synchrotron X-ray powder diffraction and neutron powder diffraction. All of them crystallize in monoclinic structures, especially the nine new compounds have the polar space group P21 symmetry, as confirmed by second harmonic generation measurements. The P21 polar structures were decomposed and refined in terms of symmetry modes, demonstrating that the polar mode is induced by two nonpolar modes in a manner of Hybrid Improper Ferroelectricity. The amplitudes of these three major modes all increase with decreasing the Ln cation size. The spontaneous ferroelectric polarization is estimated from the neutron diffraction data of three samples (Ln = Y, Tb, and Ho) and can be as large as ∼20 µC/cm2.

18.
Phys Rev Lett ; 118(20): 207207, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28581786

RESUMO

We perform an extensive study of Sr_{3}Cr_{2}O_{7}, the n=2 member of the Ruddlesden-Popper Sr_{n+1}Cr_{n}O_{3n+1} system. An antiferromagnetic ordering is clearly visible in the magnetization and the specific heat, which yields a huge transition entropy, Rln(6). By neutron diffraction as a function of temperature we have determined the antiferromagnetic structure that coincides with the one obtained from density functional theory calculations. It is accompanied by anomalous asymmetric distortions of the CrO_{6} octahedra. Strong coupling and Lanczos calculations on a derived Kugel-Khomskii Hamiltonian yield a simultaneous orbital and moment ordering. Our results favor an exotic ordered phase of orbital singlets not originated by frustration.

19.
ACS Appl Mater Interfaces ; 9(8): 7050-7058, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28128548

RESUMO

Lithium superionic conductor (LISICON)-related compositions Li4±xSi1-xXxO4 (X = P, Al, or Ge) are important materials that have been identified as potential solid electrolytes for all solid state batteries. Here, we show that the room temperature lithium ion conductivity can be improved by several orders of magnitude through substitution on Si sites. We apply a combined computer simulation and experimental approach to a wide range of compositions (Li4SiO4, Li3.75Si0.75P0.25O4, Li4.25Si0.75Al0.25O4, Li4Al0.33Si0.33P0.33O4, and Li4Al1/3Si1/6Ge1/6P1/3O4) which include new doped materials. Depending on the temperature, three different Li+ ion diffusion mechanisms are observed. The polyanion mixing introduced by substitution lowers the temperature at which the transition to a superionic state with high Li+ ion conductivity occurs. These insights help to rationalize the mechanism of the lithium ion conductivity enhancement and provide strategies for designing materials with promising transport properties.

20.
Inorg Chem ; 55(23): 12211-12219, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27934443

RESUMO

Li oxide garnets are among the most promising candidates for solid-state electrolytes in novel Li ion and Li metal based battery concepts. Cubic Li7La3Zr2O12 stabilized by a partial substitution of Zr4+ by Bi5+ has not been the focus of research yet, despite the fact that Bi5+ would be a cost-effective alternative to other stabilizing cations such as Nb5+ and Ta5+. In this study, Li7-xLa3Zr2-xBixO12 (x = 0.10, 0.20, ..., 1.00) was prepared by a low-temperature solid-state synthesis route. The samples have been characterized by a rich portfolio of techniques, including scanning electron microscopy, X-ray powder diffraction, neutron powder diffraction, Raman spectroscopy, and 7Li NMR spectroscopy. Pure-phase cubic garnet samples were obtained for x ≥ 0.20. The introduction of Bi5+ leads to an increase in the unit-cell parameters. Samples are sensitive to air, which causes the formation of LiOH and Li2CO3 and the protonation of the garnet phase, leading to a further increase in the unit-cell parameters. The incorporation of Bi5+ on the octahedral 16a site was confirmed by Raman spectroscopy. 7Li NMR spectroscopy shows that fast Li ion dynamics are only observed for samples with high Bi5+ contents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...